Health

Benefits of electric stoves on health and environment in Ecuador

One of the most popular strategies to increase energy efficiency and reduce pollution in homes—which are responsible for approximately 10% of greenhouse gas emissions—is the transitioning from gas to electric stoves. ...

Biomedical technology

Researchers develop recyclable, fully biodegradable ECG patch

VTT Technical Research Centre of Finland has developed a new sustainable electrocardiogram (ECG, also known as EKG) patch that is fully recyclable and made of biomaterials. The device is modular, so electronic components ...

Biomedical technology

Wearable patch can painlessly deliver drugs through the skin

The skin is an appealing route for drug delivery because it allows drugs to go directly to the site where they're needed, which could be useful for wound healing, pain relief, or other medical and cosmetic applications. However, ...

page 1 from 4

Electric potential energy

Electric potential energy (also known as "electrostatic potential energy") is a potential energy associated with the conservative Coulomb forces within a defined system of point charges. The term "electrostatic potential energy" is preferred here because it seems less likely to be misunderstood. The reference zero is usually taken to be a state in which the individual point charges are very well separated ("are at infinite separation") and are at rest. :§25-1 The electrostatic potential energy of the system (UE), relative to this zero, is equal to the total work W that must be done by a hypothetical external agent in order to bring the charges slowly, one by one, from infinite separation to the desired system configuration:

In this process the external agent is deemed to provide or absorb any relevant work, and the point charge being slowly moved gains no kinetic energy.

Sometimes people refer to the potential energy of a charge in an electrostatic field. This actually refers to the potential energy of the system containing the charge and the other charges that created the electrostatic field.:§25-1

To calculate the work required to bring a point charge into the vicinity of other (stationary) point charges, it is sufficient to know only (a) the total field generated by the other charges and (b) the charge of the point charge being moved. The field due to the charge being moved and the values of the other charges do not need to be known. Nonetheless, in many circumstances it is mathematically easier to add up all the pairwise potential energies (as below).

It is important to understand that electrostatics is a 18th-19th-century theory of hypothetical entities called "point charges". Electrostatics is categorically not a complete theory of the charged physical particles that make up the physical world, and are subject to the Heisenberg uncertainty principle and other laws of quantum mechanics.

This text uses material from Wikipedia, licensed under CC BY-SA