Fighting fungal infections with bacteria

Fighting fungal infections with bacteria
This is a confocal microscope image of fungal biofilm without (left) or with (right) treatment by bacteria. Credit: Gordon McAlester

A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step towards new strategies to prevent hospital-acquired infections associated with medical implants.

Researchers from University College Cork in Ireland studied the interaction between the bacterium Pseudomonas aeruginosa, which is often associated with severe burns, and the yeast Candida albicans, which can grow on plastic surfaces such as catheters. Both microbes are very common and although they are normally harmless to healthy individuals, they can cause disease in immunocompromised people.

The team discovered that molecules produced by P. aeruginosa bacteria were able to hinder the development of C. albicans 'biofilms' on silicone, when the clump together on the surface of the plastic. Interestingly, the interaction between the two organisms did not depend on the well-studied bacterial communication system called Quorum Sensing, indicating that a novel signalling mechanism was at play.

C. albicans is the most common hospital-acquired and can cause illness by sticking to and colonising plastic surfaces implanted in the body such as , cardiac devices or prosthetic joints. This biofilm formation is a key aspect of C. albicans infection and is problematic as biofilms are often resistant to the antibiotics used to treat them. Dr John Morrissey, who led the team of researchers, said, "Candida albicans can cause very serious deep infections in susceptible patients and it is often found in biofilm form. It is therefore important to understand the biofilm process and how it might be controlled."

Dr Morrissey believes his work may lead to significant clinical benefits. "If we can exploit the same inhibitory strategy that the bacterium P. aeruginosa uses, then we might be able to design drugs that can be used as antimicrobials to disperse yeast biofilms after they form, or as additives onto plastics to prevent biofilm formation on ," he said. "The next steps are to identify the chemical that the bacterium produces and to find out what its target in the is. We can then see whether this will be a feasible lead for the development of new drugs for clinical application."

Provided by Society for General Microbiology

Citation: Fighting fungal infections with bacteria (2010, May 1) retrieved 24 April 2024 from https://phys.org/news/2010-05-fungal-infections-bacteria.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New mechanism fundamental to the spread of invasive yeast infections identified

0 shares

Feedback to editors