What controls blood flow in the brain?

brain
Left hemisphere of J. Piłsudski's brain, lateral view. Credit: public domain

When neurons become active, they call for an extra boost of oxygenated blood—this change in the presence of blood in different regions of the brain is the basis for functional brain scans. However, what controls this increase or decrease in blood supply has been a long-standing debate.

In a paper published on June 25 in Neuron, Yale University scientists present the strongest evidence yet that smooth surrounding in the brain are the only cells capable of contracting to control blood vessel diameter and thus regulate blood flow. This basic anatomical understanding may also have important implications for phenomena observed in stroke and migraines.

Smooth muscle cells line the thicker blood vessels in the brain, while the branching capillaries are covered by a mysterious cell type called pericytes. Pericytes are not muscle cells or neurons, but they are found in large numbers in the brain and are thought to play a role in . Previous studies have suggested that pericytes could contract to regulate blood flow in the smaller blood vessels, but the new Neuron paper contradicts this theory.

'We found that when neurons fire more actively (either during normal brain activity or events such as migraines) there is a response in small blood vessels that are covered by , but not those that are covered by pericytes,' says senior study author Jaime Grutzendler, director of Yale School of Medicine's Center for Experimental Neuroimaging.

His team, including co-lead authors Robert Hill, Lei Tong, and Peng Yuan, made these observations in mice using high-resolution optical imaging and optogenetics, an emerging laboratory tool that allows researchers to distinctly activate single cells. With these tools, they could map out the location and identity of the cells that were making use of a spring-like protein called actin to contract—which pericytes were never observed to do.

Specialized microscope looking into the live mouse brain reveals that smooth muscle cells (cyan) surrounding blood vessels abnormally constrict during and after stroke causing permanent vessel blockage. This phenomenon could worsen the injury in stroke and provides a new target for potential drugs to improve stroke outcome. Credit: Courtesy of Grutzendler et al./Neuron 2015

If capillaries do not regulate , then the next question is how individual neurons around the capillaries can request blood when they need to be active: 'While there is a local response, this response is not so local that a single capillary dilation/contraction will be triggered by the few adjacent neural cells surrounding it.' Grutzendler says. 'Our data supports the idea that flow control requires a certain threshold of cumulative neural activity within an area to trigger blood vessel dilation, which would then increase the flow to all its downstream capillary branches.'

He notes that if this is how blood vessels function, it could provide insight into the 'no reflow' phenomenon that occurs after stroke. Even after the blood clot or other blockage that causes a stroke is removed, blood does not start reflowing downstream to the tissue. The reason could be that abnormal constrictions in smooth muscle-covered blood vessels result in permanent vessel block in downstream vessels through formation of new clots and other mechanisms (see video). Grutzendler plans to explore therapeutic interventions that could help smooth muscle-covered blood vessels dilate on their own after stroke in hopes that it can limit the damage.

More information: Neuron, Hill, Tong & Yuan et al.: 'Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes' www.cell.com/neuron/abstract/S0896-6273(15)00514-0

Journal information: Neuron
Provided by Cell Press
Citation: What controls blood flow in the brain? (2015, June 25) retrieved 26 April 2024 from https://medicalxpress.com/news/2015-06-blood-brain.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Cell-saving drugs could reduce brain damage after stroke

186 shares

Feedback to editors