Study identifies new target for treatment of pulmonary hypertension

Scientists at Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago have identified a gene called FoxM1 as a promising target for treatment of pulmonary hypertension, or high blood pressure in the lung arteries. Patients with this severe lung disease that damages the right side of the heart have a five-year survival rate of 50 percent. The study results, published in the American Journal of Respiratory and Critical Care Medicine, will drive development of new drugs to reverse a process called vascular remodeling, or thickening of lung artery walls - a key feature in pulmonary hypertension.

"Currently we do not have drugs that target vascular remodeling in ," says lead author Zhiyu Dai, PhD, from the Manne Research Institute at Lurie Children's, who also is a Research Assistant Professor of Pediatrics at Northwestern University Feinberg School of Medicine. "Our study shows that when we deleted the FoxM1 gene in the of the artery in mice, the result was thinner , reduced blood pressure in the lung and improved right heart function. We can use a compound against FoxM1 to reverse vascular remodeling in rat models of the disease. "

FoxM1 gene controls cell growth and its function has been studied in cancer proliferation. Research on this gene is still in the preclinical stage. Dr. Dai and colleagues were the first to use a genetically modified mouse model to establish the role of FoxM1 in pulmonary hypertension. Without this gene in smooth muscle cells, the mouse does not grow thicker artery walls and so does not develop in the lung.

Dr. Dai and colleagues also discovered that in pulmonary hypertension, the FoxM1 gene is turned on by many growth factors that are released by damaged endothelial cells, which line the inner wall of the artery. Endothelial cell damage is considered to be the initial event in the development of pulmonary hypertension. Signals from the released growth factors induce FoxM1 gene expression to increase production of smooth muscle cells in the middle layer of the artery wall, which causes artery wall thickening.

"We will now focus on developing new drugs that will inhibit the FoxM1 gene and hopefully improve outcomes for patients with pulmonary hypertension," says Dr. Dai.

Provided by Ann & Robert H. Lurie Children's Hospital of Chicago
Citation: Study identifies new target for treatment of pulmonary hypertension (2018, April 30) retrieved 26 April 2024 from https://medicalxpress.com/news/2018-04-treatment-pulmonary-hypertension.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Crosstalk between cells plays role in pulmonary hypertension

3 shares

Feedback to editors