Researchers use radiomics to predict who will benefit from chemotherapy

Researchers use radiomics to predict who will benefit from chemotherapy
Flowchart shows strategy for patient selection and overall experimental design for this study. Credit: Radiological Society of North America

Using data from computed tomography (CT) images, researchers may be able to predict which lung cancer patients will respond to chemotherapy, according to a new study published in the journal Radiology: Artificial Intelligence.

Platinum-based is typically the first-line treatment of advanced-stage non- (NSCLC). However, only about one in four responds well to this treatment. Currently, there is no way to predict which patients will benefit most from chemotherapy.

CT exams are routinely used for tumor staging and monitoring treatment response. Using a field of study called radiomics, researchers can extract quantitative, or measurable, data from CT images that can reveal disease characteristics not visible in the images alone.

"Our aim in this study was to determine whether an early prediction of response to chemotherapy is possible by using computer-extracted measurements of patterns both within and outside the lung nodule, along with the shape of the nodule, on baseline CT scans," said Mohammadhadi Khorrami, M.S., a Ph.D. candidate from the Department of Biomedical Engineering, Case Western Reserve University School of Engineering in Cleveland, Ohio, who, along with Monica Khunger, M.D., from the Department of Internal Medicine at Cleveland Clinic, led the study.

The researchers set out to identify the role of radiomic texture features—both within and around the —in predicting time to progression and overall survival, as well as response to chemotherapy in patients with NSCLC.

"This is the first study to demonstrate that computer-extracted patterns of heterogeneity, or diversity, from outside the tumor were predictive of response to chemotherapy," Dr. Khunger said. "This is very critical because it could allow for predicting in advance of therapy which patients with lung cancer are likely to respond or not. This, in turn, could help identify patients who are likely to not respond to chemotherapy for such as radiation or immunotherapy."

Researchers use radiomics to predict who will benefit from chemotherapy
Radiomic feature maps show differences between lesions in responders and lesions in nonresponders at pretreatment CT. There appears to be overexpression of radiomic features (A, peritumoral Gabor and, B, intratumoral Laws features) in the nonresponder lesion compared with the responder lesion. The distribution of the features shows significant differences between the two lesion categories; these differences are captured by the skewness and kurtosis statistics of the feature distribution. Credit: Radiological Society of North America

They analyzed data from 125 patients who had been treated with pemetrexed-based platinum doublet chemotherapy at Cleveland Clinic. The patients were divided randomly into two sets with an equal number of responders and non-responders in the training set. The training set comprised 53 patients with NSCLC, and the validation set comprised 72 patients.

A computer analyzed the CT images of lung cancer to identify unique patterns of heterogeneity both inside and outside the tumor. These patterns were then compared between CT scans of patients who did and did not respond to chemotherapy. These feature patterns were then used to train a machine learning classifier to identify the likelihood that a cancer patient would respond to chemotherapy.

"When we looked at patterns inside the tumor, we got an accuracy of 0.68. But when we looked inside and outside, the accuracy went up to 0.77," Khorrami said.

The results showed that the radiomic features derived from within the tumor and the area around the tumor were able to distinguish patients who responded to chemotherapy from those who did not. In addition, the radiomic features predicted time to progression and .

"Despite the large number of studies in the CT-radiomics space, the immediate surrounding tumor area, or the peritumoral region, has remained relatively unexplored," Khorrami said. "Our results showed clear evidence of the role of peritumoral texture patterns in predicting response and time to progression after chemotherapy."

Although the researchers did not explicitly study the basis for the identified radiomic features around the , they hypothesize that these patterns reflect increased fibrotic content in chemotherapy-compliant tumors.

According to Khorrami, the radiomic data derived from CT images can also potentially help identify those patients who are at elevated risk for recurrence and who might benefit from more intensive observation and follow-up.

More information: Combination of Peri- and Intratumoral Radiomic Features on Baseline CT Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma, Radiology: Artificial Intelligence, 2019.

Citation: Researchers use radiomics to predict who will benefit from chemotherapy (2019, March 20) retrieved 24 April 2024 from https://medicalxpress.com/news/2019-03-radiomics-benefit-chemotherapy.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Adjuvant chemotherapy improves overall survival in patients with stage IB non-small cell lung cancer

 shares

Feedback to editors